SIMPEL: circuit model for photonic spike processing laser neurons.

نویسندگان

  • Bhavin J Shastri
  • Mitchell A Nahmias
  • Alexander N Tait
  • Ben Wu
  • Paul R Prucnal
چکیده

We propose an equivalent circuit model for photonic spike processing laser neurons with an embedded saturable absorber—a simulation model for photonic excitable lasers (SIMPEL). We show that by mapping the laser neuron rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate engine for numerical calculations, capable of generalization to a variety of different types of laser neurons with saturable absorber found in literature. The development of this model parallels the Hodgkin-Huxley model of neuron biophysics, a circuit framework which brought efficiency, modularity, and generalizability to the study of neural dynamics. We employ the model to study various signal-processing effects such as excitability with excitatory and inhibitory pulses, binary all-or-nothing response, and bistable dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emerging Photonic Hardware Platforms

Photonic integrated circuit technology could revolutionize optical information processing, beyond conventional binary-logic approaches, granting the capacity of ultrafastcategorization and decision-making. We will discuss the progress and requirements of scalable and reconfigurable emerging photonic hardware platforms. © 2016 Optical Society of America OCIS codes: (200.0200) Optics in computing...

متن کامل

Recent progress in semiconductor excitable lasers for photonic spike processing

Recently, there has been tremendous interest in excitable optoelectronic devices and in particular excitable semiconductor lasers that could potentially enable unconventional processing approaches beyond conventional binary-logic-based approaches. In parallel, there has been renewed investigation of non-von Neumann architectures driven in part by incipient limitations in aspects of Moore’s law....

متن کامل

Temporal summation in a neuromimetic micropillar laser.

Neuromimetic systems are systems mimicking the functionalities or architecture of biological neurons and may present an alternative path for efficient computing and information processing. We demonstrate here experimentally temporal summation in a neuromimetic micropillar laser with an integrated saturable absorber. Temporal summation is the property of neurons to integrate delayed input stimul...

متن کامل

Optical hybrid analog-digital signal processing based on spike processing in neurons

Spike processing is one kind of hybrid analog-digital signal processing, which has the efficiency of analog processing and the robustness to noise of digital processing. When instantiated with optics, a hybrid analog-digital processing primitive has the potential to be scalable, computationally powerful, and have high operation bandwidth. These devices open up a range of processing applications...

متن کامل

Identifying Dendritic Processing

In system identification both the input and the output of a system are available to an observer and an algorithm is sought to identify parameters of a hypothesized model of that system. Here we present a novel formal methodology for identifying dendritic processing in a neural circuit consisting of a linear dendritic processing filter in cascade with a spiking neuron model. The input to the cir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 23 6  شماره 

صفحات  -

تاریخ انتشار 2015